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Abstract 

Accurate prediction of remaining useful life (RUL) of lithium-ion battery plays an 
increasingly crucial role in the intelligent battery health management systems (BMS). The 
advances in machine learning introduce new data-driven approaches to this problem. In 
this paper, the various integrated machine learning models for RUL prediction of lithium-
ion battery during its first 100 life cycles are proposed. Moreover, optimal performance of 
these models is compared and the major factors affecting the RUL of the battery are 
obtained. The proposed RUL prediction models is trained for remaining cycle life 
estimation. The various experimentations are carried out to test the effectuality of the 
presented models. It is observed that the proposed approach which is applied to the real 
dataset of lithium-ion battery cycle life performs better than the existing approaches. The 
experimental results show that the accuracy of RUL prediction (Cycle number) can be 
improved using machine-learning approaches. 
 
Keywords – Lithium-ion battery, Remaining useful life, Machine learning, Prediction 
models, Feature extraction, Data driven approach, Battery management system (BMS). 
 

1. INTRODUCTION 

Lithium-ion batteries are deployed in a wide range of applications due to their low and falling costs, high 
energy densities and long lifetimes. However, as in the case with many chemical, mechanical and electronic 
systems, long battery lifetime entails delayed feedback of performance, often many months to years [1]. 
Accurate prediction of lifetime using cycle-data would unlock new opportunities in battery production, use 
and optimization [2]. The task of predicting lithium-ion battery lifetime is critically important given its broad 
utility and wide variability, even when controlling for operating conditions. 

Recently, with the development of battery-related technologies, more and more data of these Lithium-
ion batteries have been produced [3], [4]. A database using Lithium-ion phosphate (LFP)/graphite cells has 
been established by Saha and Goebel [5]. Based on these datasets, the data processing methods, such as 
machine learning approach, have been applied gradually to analyse the properties of the batteries. These 
machine learning approaches are especially attractive for high-rate operating conditions, where first-
principles models of degradation are often unavailable. In short, opportunities for improving upon state-of-
the-art prediction models include higher accuracy, earlier prediction, greater interpretability and broader 
application to a wide range of cycling conditions [6],[7]. The different approaches using statistical and 
machine-learning techniques to predict cycle life are attractive and mechanism-agnostic alternatives. 
Recently, advances in computational power and data generation have enabled these techniques to accelerate 
progress for a variety of tasks, including prediction of material properties, identification of chemical synthesis 
routes and material discovery for energy storage and catalysis [8],[9],[10]. 

An average Lithium-ion battery is capable of performing 700-800 cycles before dying out and discarded 
away completely. Degradation of batteries usually starts with the completion of 450-500 life cycles and 
continues to degrade before the chemicals present inside the cell are completely exhausted and of no use for 
any application [11]. Therefore, in this paper, data-driven models has been developed that accurately predict 
the cycle life of commercial lithium-ion phosphate (LFP) or graphite cells using early-cycle data and classify 
the given batteries, with no prior knowledge of degradation mechanisms and correlating the parameters which 
are responsible for determining the state of the Lithium-ion battery in its initial early stage life cycle (1-100).  

 

2. DATA SET DETAILS 
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From the dataset [12] six features of the Lithium-ion battery cell is observed and taken into account 

during each cycle of the battery from beginning till the battery has completely degraded and of no use, which 
is around 760 life cycle. The six features used for early-stage prediction are; Charge Capacity, Discharge 
Capacity, Internal Resistance, Temperature, Current, and Voltage. For early-stage prediction, machine 
learning models are trained on the first hundred life cycles (1-100 life cycle), considering the above six factors 
on which the Lithium-ion battery cycle life depends.  

3. MACHINE LEARNING APPROACHES AND MODELS  

Based on the given dataset, six Machine Learning models has been created, namely: Deep Neural Network, 
Gradient Boosting Trees (GBT), Naïve Bayes, Principal Component Analysis (PCA), Linear Discriminant 
Analysis (LDA) and Kernel PCA.  

3.1 Deep Neural Network (DNN) 
 DNN was established using Python and open-source library Keras from Tensorflow. Our DNN consist of 
three hidden layers and one output layers. The activation function used in the hidden layers is “relu” function 
and the activation used in the output layer is “softmax” function. The optimizer used for the DNN is “adam” 
optimizer for its better performance on big data. The data was divided into the batch size of ‘10’ and number 
of epochs used- ‘100’. Number of hidden layers used are ‘4’ followed by ‘binary cross-entropy’ loss function. 

3.2 Gradient Boosting Trees (GBT) 
GBT is a machine learning technique for regression and classification problems, which produces a prediction 
model in the form of an ensemble of weak prediction models, typically decision tree [13]. It builds the model 
in a stage-wise fashion like other boosting methods do, and it generalizes them by allowing optimization of 
an arbitrary differentiable loss function. The model had a maximum depth(max_depth) of ‘2’, number of 
trees(n_estimators) of ‘20’ with a learning rate of ‘0.1’.(Among other various learning rates used) 

3.3 Naïve Bayes 
Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ theorem with the 
“naive” assumption of conditional independence between every pair of features given the value of the class 
variable. Naïve Bayes classifiers are highly scalable, requiring a number of parameters linear in the number 
of variables (features/predictors) in a learning problem. Maximum-likelihood training can be done by 
evaluating a closed form expression which takes linear time, rather than by expensive iterative 
approximation as used for many other types of classifiers. To implement- ‘from sklearn.naive_bayes import 
GaussianNB’, done on the basis of [14]. 

3.4 Principal Component Analysis (PCA) 
PCA is a statistical procedure that uses an orthogonal transformation which converts a set of correlated 
variables to a set of uncorrelated variables. PCA is a most widely used tool in exploratory data analysis and 
in machine learning for predictive models. Moreover, PCA is an unsupervised statistical technique used to 
examine the interrelations among a set of variables. The PCA model consist of ‘2’ number of 
components(n_components) followed by a Logistic Regression model with parameters – solver = ‘lbfgs’ , 
multi_class = ‘auto’. 

3.5 Linear Discriminant Analysis (LDA) 
LDA is a dimensionality reduction technique which is commonly used for the supervised classification 
problems. It is used for modelling differences in groups i.e. separating two or more classes. It is used to 
project the features in higher dimension space into a lower dimension space. LDA explicitly attempts to model 
the difference between the classes of data. The PCA model consist of ‘2’ number of components (n-
components) followed by a Logistic Regression model. 

3.6 Kernel Principal Component Analysis (kernel PCA) 
Kernel PCA is an extension of principal component analysis using techniques of kernel methods. Using a 
kernel, the originally linear operations of PCA are performed in a reproducing kernel Hilbert space.  Kernel 
PCA uses a kernel function to project dataset into a higher dimensional feature space, where it is linearly 
separable. It is similar to the idea of Support Vector Machines. The model consist of ‘2’ components followed 
by kernel function ‘rbf’ (radial basis function). 

4. PROPOSED MODEL  

In literature, the most efficient machine learning models available; Deep Neural Network (DNN) [15], 
Gradient Boosting Trees (GBT) [16], Naïve Bayes, Principal Component Analysis (PCA) [17], Linear 
Discriminant Analysis (LDA) [18] and Kernel PCA [19]. The DNN model is run using Keras library provided 
by Tensor-flow. Rest of the machine learning models are run using Scikit-learn library. All these machine 
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learning models are run on the Anaconda Navigator software build with the Spyder integrated-development 
environment. The Pearson’s coefficient of correlation is found using the SPSS software. 

The complete proposed approach is demonstrated as shown in Fig. 1. Moreover, the Table 1 explain the 
major steps and their description.  

  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Flow chart of proposed approach based on machine learning 
 

Table 1: The most important features before machine learning model implementation on dataset 
 

Feature Description 

Raw Data Raw data of lithium-ion phosphate (LFP)/ graphite cells APR18650M1A is 
generated using a intelligent Battery Management System (BMS) and 
converted into categorical dataset. 

Data Pre-Processing The dataset is then cleaned, processed and unknown values are being 
averaged out and filled. 

Normalization Standard Scaler function is implemented on the dataset to reduce and 
eliminate data reluctance and improve data integrity. 

Test/Train Set The dataset is split into two halves – Testing set and Training set in the 
ratio of 0.25 

 

5. EXPERIMENTATIONS AND RESULTS 

Prediction Model 

Development & 
Monitoring 

Model 
Evaluation 
& Tuning 

Raw Data 

Data Pre-processing 

Normalization 
(Standard Scaler) 

Test Set Training Set 

Machine Learning  
Algorithm 
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5.1 Analysis of Dataset  
The dataset [12] consists of 124 commercial lithium-ion batteries cycled to failure under fast-changing 
conditions. These lithium-ion phosphate (LFP)/ graphite cells APR18650M1A, are cycled in horizontal 
cylindrical fixtures on a 48-channel Arbin-LBT potentiostat in a forced convection temperature chamber set 
to 30˚C. These cells have a nominal capacity of 1.1 Ah and a nominal voltage of 3.3 V (Irregularity in dataset 
are not taken into account for ideal condition). Some of the important feature are as follows:  

 All cells are cycled with one-step or two-step charging policies. The charging time varies from 8 to 
13.3 minutes (0-80% SOC). There are generally two cells tested per policy, with the exception of 
3.6C (80%). 

 1 minute and 1 second rests are placed after reaching 80% SOC during charging and after 
discharging, respectively. 

 Cycle to 80% of nominal capacity (0.88 Ah). 
 An initial 0.1C (10-hour discharge) cycle was performed in the beginning of each test.  
 The cut-off currents for the constant-voltage steps are 0.02C for both charge and discharge. 
 The pulse width of the current-resistance test is 30 ms. 

 

Based on the prior knowledge of Lithium-ion phosphate (LFP)/graphite cells, we initialized six most 
important parameters in order to the predict early-life of the battery: 1. Charge Capacity, 2. Discharge 
Capacity, 3. Internal Resistance, 4. Temperature, 5. Current, 6. Voltage. Charge capacity and Discharge 
capacity are the basic attributes of lithium-ion batteries. Internal resistance characterizes the battery assembly 
process and internal state. Temperature represents the external environment of the battery. Current and 
Voltage are both intensive properties of the Lithium-ion Battery representing the current state. Initial 100 
cycles are considered. 

The average charging rates ranging from 3.6 C, the manufacturer’s recommended fast-charging rate, to 
6C to probe the performance of current-generation power cells under extreme fast-charging conditions 
(~10min charging), an area of significant commercial interest [20]. By deliberately varying the charging 
conditions, a dataset generated that captures a wide range of cycle lives, from approximately 150 to 2,300 
cycles (average cycle life of 806 with a standard deviation of 377). 

The observed conditions of Lithium-ion battery during first 100 cycles under nominal conditions is 
shown in Fig. 2. The graph is plotted between Voltage (V) and Cycle number is shown in Fig. 2(a). The 
Pearson’s coefficient of correlation of this slope is 0.984. The graph is plotted between Current (mA) and 
Cycle number is shown in Fig. 2(b) and Pearson’s coefficient of correlation of this slope is 0.174. Fig. 2(c) 
shows the relation between Charge Capacity (Ah) and Cycle number. The Pearson’s coefficient of correlation 
of this slope is 0.891. Similarly, the graph is plotted between Discharge Capacity (Ah) and Cycle number 
shown in in Fig. 2(d), and the Pearson’s coefficient of correlation of this slope is 0.922. Moreover, Fig. 2(e) 
depict the relation between internal Resistance (m-Ohm) and Cycle number. The Pearson’s coefficient of 
correlation of this slope is 0.992.  Finally, Fig. 2(f) shows the relation between Temperature (˚C) and Cycle 
number. The Pearson’s coefficient of correlation of this slope is -0.221.      

5.2 Preprocessing of Dataset  
Standardization of datasets is a common requirement for many machine learning estimators. In order to 
eliminate the negative effects caused by different ranges of values, normalization of dataset is done to reduce 
and even eliminate data redundancy and improve data integrity. In addition, the dataset is transformed into 
the same interval, which facilitates the overall training of the depth model. Machine-Learning algorithms 
benefit from standardization of the dataset. It is done by standardizing the features by removing the mean and 
scaling to unit variance. Mathematically, normalization can be represented as follows:  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑧 =
௫ିఓ

ఙ
                                                              (1) 

where µ is the mean defined as                             𝜇 =
ଵ

ே
∑ (𝑥)

ே
ୀଵ                                                                   (2) 

and 𝜎 is the standard deviation defined as        𝜎 =  ට
ଵ

ே
∑ (𝑥 − 𝜇)ଶே

ୀଵ                                                         (3)    
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(a) (b) 

 
(c)                                                                                (d) 

        
                                        (e)                                                                                 (f) 
Fig. 2: Observed conditions of Lithium-ion battery during first 100 cycles under nominal conditions. a) 
Voltage and Cycle number, (b) Current (mA) and Cycle number, c) Charge Capacity (Ah) and Cycle number, 
d) Discharge Capacity (Ah) and Cycle number, e) Internal Resistance (m-Ohm) and Cycle number, f) 
Temperature and Cycle number.  
 
The proposed algorithm is defined stepwise as given Algorithm 1.   
 

Algorithm 1 
1. From sklearn.preprocessing import StandardScaler 

2. sc = StandardScaler() 

3. X_train = sc.fit_transform(X_train) 

4. X_test = sc.transform(X_test) 

5.classifier=Sequential();classifier.add(Dense(activation="relu",input_dim=10,units=6,kernel_initializer="uniform")) 
 

6. classifier.add(Dense(activation="relu", units=6, kernel_initializer="uniform")) 

7. classifier.add(Dense(activation="relu", units=6, kernel_initializer = "uniform")) 

8. classifier.add(Dense(activation="softmax",units=1,kernel_initializer="uniform")) 

9. classifier.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])  

10. classifier.fit(X_train, y_train, epochs = 100,batch_size = 10) 

11. y_pred = classifier.predict(X_test) 

0

1

2

3

4

V
ol

ta
ge

 (
V

)

Cycle Number (1-100)

-6
-4
-2
0
2
4
6
8

10

C
ur

re
nt

 (
m

A
)

Cycle Number (1-100)

0

0.2

0.4

0.6

0.8

1

1.2

C
ha

rg
e

C
ap

ac
ity

 (
A

h)

Cycle Number (1-100)
0

0.2

0.4

0.6

0.8

1

1.2

D
is

ch
ar

ge
C

ap
ac

ity
 (

A
h)

Cycle Number (1-100)

0

0.005

0.01

0.015

0.02

0.025

In
te

rn
al

 R
es

is
ta

nc
e 

(m
O

hm
)

Cycle Number (1-100)
29

30

31

32

33

34

35

T
em

pe
ra

tu
re

 (
C

*)

Cycle Number (1-100)



Birla Institute of Technology and Science Pilani – Dubai Campus 

 
Based on the above proposed algorithm the various experimentations are carried out using six different 

models and the accuracy has been compared among themselves to find out the efficient model.  Fig. 3 shows 
the prediction accuracies of the six machine learning models on lithium-ion phosphate (LFP)/ graphite cells 
APR18650M1A dataset.  

 

 

Fig. 3: Accuracy of different machine learning models 
 
 
Moreover, the accuracy of the different models has been enumerated in Table 2 along with training and 
testing datasets.  
 

Table 2: Accuracy Table for training and testing set 

Model Training Set Testing Set 

Deep Neural Network 92.023% 89.44% 

Gradient Boosting Trees 84.01% 80.88% 

Naïve Bayes 85.89% 83.29% 

PCA 90.67% 87.23% 

LDA 83.31% 79.37% 

Kernel PCA 88.27% 84.86% 

 

With the following results as shown in Table 2, it is found that Deep Neural Network outperforms the 
remaining 5 machine learning models on both training set and testing set. PCA model is the second-best 
model showing good results on the testing set and training set. Kernel PCA is third best predicting model 
followed by Naïve Bayes and Gradient Boosting Trees with LDA showing the least accuracy on the testing 
test. The decrease in accuracy on testing test as compared to training set signifies that the models were 
prevented from overfitting and therefore improves the optimization of the algorithms. Thus, Deep Neural 
Network and PCA are top predicting models and can be further improved by changing hyperparameters and 
with more data. 

The experimental results show the effectiveness and better accuracy of the proposed approach as compared 
with the other linear regression, Bayesian regression, decision trees and other shallow models. Moreover, the 
Pearson’s coefficient of correlation signifies that the Internal Resistance, Discharge Capacity and Charge 
Capacity are the major factors affecting the degradation of Lithium-Ion batteries with time followed by 
Discharge Capacity for the initial 100 life-cycles of the battery when in used. 
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CONCLUSION 

Data-driven machine learning models shows a promising future for diagnostics and prognostics of lithium-
ion batteries and enables emerging applications in their development, manufacturing and optimization. In this 
study, a cycle life prediction models are proposed using early-cycle discharge data. The presented models can 
achieve increasing performance in training speed, while obtaining results comparable to the traditional 
approaches. This work highlights the promise of combining data generation and data-driven modelling for 
understanding and developing complex systems such as lithium-ion batteries. However, it is observed that 
there is still room for improvement of top performing models. Therefore, an improve the proposed approach 
for lithium-ion battery RUL prediction in the contexts of different working conditions of the battery can be 
modified which may be the future work.  

In future work, the presented model can be used in applications that can accelerate research and development 
of new battery designs and reduce the time and cost of production. It can shorten the time for validating new 
types of batteries, which is especially important given rapid advances in material. With the machine learning 
techniques, electric vehicle batteries determined to have short lifespans could be used instead to power street 
lights or back up data centres. Recyclers could find cells from used EV battery packs with enough capacity 
left for a second life and can help in development of improved Battery Management System (BMS) 
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 PROPOSED MACHINE-LEARNING MODELS 

All the machine-learning models proposed in this paper are uploaded on: 
https://github.com/aditya77777?tab=repositories  
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