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Abstract—The Securities and Exchange Commission (SEC)
Form 13F filings provide insights into the investment strategies
of large institutional investors, offering a quarterly snapshot of
their holdings. This paper explores the predictive modelling of
institutional asset values based on historical Form 13F filings
from 2013 to 2024. Machine learning techniques, including Linear
Regression, Decision Trees, Random Forests, and XGBoost, are
applied to predict the total market value of institutional holdings
using engineered financial metrics and firm-level attributes.
Extensive feature selection and transformation techniques, in-
cluding log transformations and scaling, are utilized to optimize
model performance. Experimental results demonstrate that tree-
based models outperform linear regression, with Random Forest
and XGBoost achieving the highest predictive accuracy. Feature
importance analysis reveals that an institution’s maximum and
minimum security values are the most influential predictors.
The findings contribute to quantitative finance research by
providing an automated approach to analyzing institutional
investment patterns and estimating portfolio valuations. The
proposed methodology offers practical implications for financial
analysts, hedge funds, and market researchers aiming to enhance
investment decision-making.

Index Terms—Machine Learning, Institutional Investment,
Form 13F, Predictive Modeling, Financial Data Analysis, Random
Forest, XGBoost, Portfolio Valuation

I. INTRODUCTION

Institutional investors significantly impact financial markets
through capital allocation, market liquidity, and investment
trends [1f]. The SEC Form 13F filings mandate institutional
investors managing over $100 million in assets to disclose their
equity holdings quarterly, providing transparency into hedge
funds, mutual funds, and pension funds [2]]. These filings allow
market participants to analyze institutional trading patterns and
asset allocations [3|].

Recent advancements in machine learning (ML) have rev-
olutionized financial data analysis, enabling predictive mod-
elling techniques to extract patterns from large datasets. Pre-
dictive modelling of Form 13F filings has gained traction
among researchers, as it offers insights into institutional port-
folio valuations and market movements [4]]. While traditional
econometric models, such as factor-based approaches, have
been widely employed, ML techniques particularly tree-based
models demonstrate superior predictive performance by cap-
turing complex nonlinear relationships in financial data [5].

This paper develops an ML-based predictive framework
to estimate institutional investment values from Form 13F

filings. Feature engineering techniques, including log trans-
formations and standardization, are applied to enhance model
interpretability. To evaluate predictive accuracy, a compara-
tive analysis is conducted across Linear Regression, Decision
Trees, Random Forests, and XGBoost. Results indicate that
tree-based models significantly outperform linear regression,
with Random Forest and XGBoost achieving the highest
predictive accuracy. These findings contribute to the ongoing
research on ML applications in portfolio valuation and insti-
tutional trading analysis.

II. LITERATURE REVIEW

The application of ML in financial markets has expanded
significantly, allowing for predictive analytics in risk assess-
ment, asset valuation, and investment decision-making. Prior
research has explored ML-based forecasting models for stock
prices, portfolio allocation optimization, and market anomaly
detection.

Factor-based approaches such as the Fama—French model
remain prevalent in explaining cross-sectional returns for
large-cap equities [6]. However, recent research demonstrates
the power of machine learning in capturing nonlinear and
higher-order interactions among financial variables [7]. In
particular, deep learning architectures have shown promise
in unearthing complex patterns within large-scale financial
datasets [8]].

Among ML techniques, tree-based models such as Random
Forest and XGBoost have shown exceptional predictive power
in financial modelling. Breiman (2001) [9] introduced Random
Forest as a robust ensemble learning method, while XGBoost
has emerged as an optimized boosting algorithm for financial
applications.

Our research builds upon these studies by applying ML
models to analyze Form 13F filings. Unlike prior work focused
on stock price prediction, our study emphasizes institutional
portfolio valuation using ML-driven feature selection and
predictive modelling [10]. The results provide insights into
the effectiveness of ensemble learning in large-scale financial
disclosures.



III. DATASET AND DATA PREPROCESSING
A. Dataset Description

This study utilizes the SEC Form 13F dataset, obtained from
the EDGAR database, which mandates institutional investors
managing over $100 million to disclose their equity holdings
quarterly. The dataset provides transparency into the invest-
ment strategies of large financial institutions, including hedge
funds and mutual funds.

The dataset comprises three primary components:

« INFOTABLE: Contains security-level holdings reported
in Form 13F filings, detailing attributes such as VALUE
(market value of the asset/security) and SSHPRNAMT
(number of shares or principal amount held).

o« COVERPAGE: Metadata related to Form 13F filings,
including the name of the institutional manager and
amendment status of the filing.

« SUMMARYPAGE: Aggregated statistics summarizing
total assets under management (AUM) and total holdings
per filing.

Each dataset is linked through the unique ACCES-
SION_NUMBER, assigned by the SEC to every submission,
enabling seamless integration of information across the three
datasets.

B. Problem Statement

This research uses available financial attributes to predict
the total market value of an institutional investor’s holdings.
Specifically, the objective is to determine whether institutional
asset values can be inferred based on security-level attributes,
geographic information, and firm-level characteristics. The pri-
mary target variable for modelling is TABLEVALUETOTAL,
representing the total market value of assets reported in a Form
13F filing.

C. Exploratory Data Analysis (EDA)

Prior to model development, extensive data exploration was
conducted to understand feature distributions, detect anoma-
lies, and handle missing values [[T1]].

1) Data Statistics: The INFOTABLE dataset contains
3,278,515 rows, reflecting the individual securities held by
institutions. The COVERPAGE dataset comprises 10,117 rows,
each representing an institutional filer. The categorical vari-
ables in the COVERPAGE dataset exhibit significant class
imbalances, which may influence modelling outcomes ,
as shown in Figure [l The SUMMARYPAGE dataset, which
aggregates security holdings per filing, contains 8,244 rows.

2) Missing Values and Data Imbalance: Several variables
exhibit missing values:

« NAMEOFISSUER, TITLEOFCLASS, FIGI: Not criti-
cal, as securities can be uniquely identified using CUSIP.

o PUTCALL: Missing values indicate standard ownership
rather than options trading.

« OTHERMANAGER: Only applicable when investment
discretion is shared with another entity.

Fig. 1. Frequency distributions of categorical variables in COVERPAGE.
Certain variables exhibit significant imbalances, which may affect modelling.

To ensure modelling robustness, missing categorical values
were replaced with appropriate labels while missing numerical
values were imputed based on their distributions [13].

3) Feature Engineering: To enhance model interpretability
and improve predictive performance, the following transfor-
mations were applied:

o Log Transformation: Due to extreme skewness in fi-
nancial variables (e.g., VALUE, SSHPRNAMT, TABL-
EVALUETOTAL), log transformations were applied to
normalize distributions.

« Scaling: Standardization was applied to continuous fea-
tures to ensure consistent magnitude across variables.

o Geographic Features: Institutional filings were classified
based on US vs. non-US location using state abbrevia-
tions.

Institutions exhibit a wide range of portfolio values, with
many clustered around the mean but some outliers with
significantly higher security values, as observed in Figure 2]
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Fig. 2. Distribution of average security values held by institutions. The wide
variance suggests a diverse range of portfolio strategies among institutional
investors.

4) Correlation Analysis: A correlation heatmap was gener-
ated to identify key relationships between variables. Notably,
strong positive correlations were observed between:

« LOG MAX VALUE, LOG MEAN VALUE, and
TABLEVALUETOTAL: Indicates that institutions with
high-value securities tend to report larger overall portfolio
values.



« LOG MAX SHAMT and TABLEVALUETOTAL:
Suggests that larger share quantities contribute signifi-
cantly to total market value.

« State GDP and Number of Institutional Filers: Higher
economic activity is linked to a greater concentration of
institutional investors. A strong positive relationship is
observed between state GDP and the number of institu-
tional investors, as visualized in Figure E
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Fig. 3. State GDP vs. number of institutional investors per state. More
economically active states attract a higher number of institutional filings.

5) Log-Scale Scatterplots for Key Variables: Scatterplots
were generated to visualize trends between financial attributes
and total institutional holdings. The application of log scaling
revealed clear linear relationships between key variables and
TABLEVALUETOTAL.

As shown in Figure [] log transformations reveal clearer
linear relationships between security values and institutional
holdings, reinforcing their predictive relevance. While security
value statistics show stronger correlations with TABLEVAL-
UETOTAL, share amount variables (SHAMT) also exhibit
moderate predictive power, as indicated in Figure [5]

6) Final Feature Selection: Based on correlation analysis
and exploratory findings, six key predictors were selected for
modelling:

« MAX VALUE, MIN VALUE: Capture the extreme

security values in an institution’s portfolio.

« MEAN VALUE, STD VALUE: Represent portfolio di-

versity and risk exposure.

« MAX SHAMT, STD SHAMT: Measure share quantity

and variability across holdings.

The correlation heatmap in Figure [6| validates the selection
of key predictors, as they exhibit strong relationships with
TABLEVALUETOTAL.

The next section details the machine learning models em-
ployed for predicting institutional asset values based on these
preprocessed features.

IV. METHODOLOGY
A. Linear Regression

Linear Regression serves as our baseline model due to
its simplicity and interoperability [14]]. It assumes a linear
relationship between the dependent variable y (total asset
value) and independent variables X (financial attributes). The
model is defined as:
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Fig. 4. Scatter plots showing correlations between log-transformed security
values and total institutional holdings. Strong linear trends justify the use of
log transformations in modelling.

y=PB0+ X1+ BoXo+ -+ B X, +€ (1

where 3 is the intercept, (3,, are the regression coefficients,
and e is the error term. The model is trained by minimizing
the residual sum of squares (RSS):

B =argmin (y; — §i)” @)
=1
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Fig. 5. Scatter plots for log-transformed share amounts and TABLEVAL-
UETOTAL. While SHAMT metrics exhibit some correlation, VALUE-based
statistics are stronger predictors.

Although Linear Regression provides a good baseline, its
performance was suboptimal due to its inability to capture
non-linearity in financial datasets. This limitation is addressed
in subsequent models.

B. Decision Tree

Decision Trees provide a non-linear approach by recursively
partitioning the dataset based on feature splits that minimize
impurity [15]]. The model is trained using a recursive binary
splitting approach, where at each node, a feature X is selected
that minimizes the impurity function I, such as Gini Index or
Entropy:

k
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Fig. 6. Heatmap of correlations between log-transformed financial variables.
The selected predictors exhibit strong relationships with TABLEVALUETO-
TAL, validating their inclusion in the model.

A maximum depth of 10 and a minimum sample split of 2
were specified for the implementation. Figure [7] illustrates the
feature importance derived from the Decision Tree model.
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Fig. 7. Feature Importances from the Decision Tree Model. MAX VALUE
and MIN VALUE dominate the predictions, highlighting their significance in
institutional portfolio estimation.

C. Random Forest

Random Forest enhances Decision Trees by constructing an
ensemble of multiple trees and aggregating their predictions to
improve robustness. The model applies bootstrap aggregation
(bagging), where each tree is trained on a different subset of
the data. The prediction is obtained through majority voting
for classification or averaging for regression:

g =

]l

1 T
> flX) ®)
t=1

where fi(X) represents an individual decision tree, and
T is the total number of trees. The model hyperparameters
were tuned using GridSearchCV, where the optimal number
of estimators was found to be 100, and a maximum depth of
20 provided the best results [16].



Figure [§]illustrates feature importance in the Random Forest
model.

Feature Importances from Random Forest
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Fig. 8. Feature Importances from Random Forest. Compared to Decision
Trees, the model slightly increases the relevance of MEAN VALUE.

D. Extreme Gradient Boosting (XGBoost)

XGBoost [[17] is a gradient-boosting algorithm that sequen-
tially builds trees to minimize the loss function. Each tree
corrects the errors of its predecessors using the following
optimization:

L(O) = Uy i) + > Q) (6)
i=1 3

where [(y;,¢;) represents the loss function (e.g., squared
error for regression), and (fy) is the regularization term
penalizing complexity.
Key hyperparameters optimized include:
e Number of Trees (n_estimators): 100, 200, 300, 500,
and 700.
o Learning Rate: 0.01, 0.05, 0.1, 0.2.
o Max Depth: 1 and 2 (shallow learners to prevent over-
fitting).
¢ Regularization (L1 and L2): Alpha = 0.1, Lambda =
0.01.

The optimal parameters found via GridSearchCV set
n_estimators = 681, as seen in Figure E}
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Fig. 9. Training and Validation RMSE for XGBoost. The lowest RMSE was
observed at 681 estimators.

Feature importance for XGBoost, depicted in Figure [T0}
highlights MAX VALUE as the dominant predictor.

Feature Importances from Gradient Boosting (XGBoost)
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Fig. 10. Feature Importances from XGBoost. MAX VALUE remains the most
significant predictor, but STD VALUE gains relevance compared to Random
Forest.

V. RESULTS
A. Model Performance Evaluation

The performance of the models was evaluated using the R?
score and Mean Squared Error (MSE) for both training and
test datasets. The Table [[] presents the results.

TABLE I
MODEL PERFORMANCE COMPARISON

Model Train R2 Test R2 Train MSE  Test MSE
Linear Regression 0.4744 0.5093 13.6274 13.6329
Decision Tree 0.9455 0.8689 1.4137 3.6432
Random Forest 0.9553 0.9000 1.1600 2.7775
XGBoost 0.9349 0.8998 1.6871 2.7829

As expected, Linear Regression performed the worst among
all models, with the lowest R? scores and the highest MSE val-
ues. The Decision Tree model showed significant improvement
over Linear Regression, but it was outperformed by ensemble
models such as Random Forest and XGBoost.

Random Forest and XGBoost achieved the best predic-
tive performance, with Random Forest slightly outperforming
XGBoost in terms of MSE. However, XGBoost is generally
considered a more powerful and flexible model due to its
regularization capabilities and handling of complex feature
interactions.
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Fig. 11. Comparison of R? and MSE across different models. Random
Forest and XGBoost demonstrate superior predictive performance compared
to baseline models.



B. Feature Importance Analysis

The importance of features across tree-based models (De-
cision Tree, Random Forest, and XGBoost) was analyzed to
identify key predictors of institutional asset values as shown
in Table [

TABLE II
FEATURE IMPORTANCE ACROSS MODELS

Feature XGBoost Random Forest Decision Tree
MAX VALUE 0.5318 0.4937 0.5173
MIN VALUE 0.3015 0.4599 0.4623
STD VALUE 0.0796 0.0076 0.0065
MAX SHAMT 0.0546 0.0104 0.0061
MEAN VALUE 0.0251 0.0225 0.0004
STD SHAMT 0.0075 0.0058 0.0073
o

MAX VALUE MINVALUE STOVALE MAX SHAMT MEAN VALUE STD ShamT

Fig. 12. Feature Importance Across Different Models. MAX VALUE and
MIN VALUE remain the dominant predictors across all models.

Across all models, MAX VALUE and MIN VALUE were
the most influential features in predicting institutional hold-
ings. These variables set upper and lower bounds on the total
reported value of assets, making them crucial in estimating
TABLEVALUETOTAL.

Interestingly, STD VALUE (standard deviation of security
values) was considered an important predictor in XGBoost
but was much less relevant in Random Forest and Decision
Tree models. This suggests that XGBoost effectively captures
additional variance and non-linear interactions that may not
be as emphasized in bagging-based models.

VI. CONCLUSION

This study leveraged the SEC Form 13F dataset to pre-
dict institutional asset values using machine learning models,
addressing challenges such as high dimensionality, redundant
columns, and missing values through extensive feature en-
gineering. The research applied various predictive models,
including Linear Regression, Decision Tree, Random Forest,
and XGBoost, to assess the effectiveness of ML techniques in
estimating institutional portfolio values.

Among the models evaluated, Linear Regression struggled
with non-linearity, resulting in poor predictive performance
and high errors. The Decision Tree model demonstrated an
improvement in capturing complex relationships but suffered
from overfitting, limiting its generalization. In contrast, ensem-
ble methods such as Random Forest and XGBoost significantly
improved stability and predictive accuracy. While Random
Forest marginally outperformed XGBoost in this study, the
latter’s boosting framework and built-in regularization suggest
the potential for further optimization with refined hyperparam-
eter tuning.

The findings emphasize the need for more advanced opti-
mization techniques to enhance predictive performance. Fu-
ture work should explore hyperparameter tuning strategies
such as Bayesian optimization, along with feature engineer-
ing refinements, including interaction terms and additional
transformations. Further research could also investigate al-
ternative boosting frameworks, such as LightGBM and Cat-
Boost, to assess their efficiency in financial prediction tasks.
Additionally, security-level predictions, incorporating CUSIP
identifiers, could provide deeper insights into individual asset
valuations within institutional portfolios.

Overall, this study highlights the effectiveness of ensemble
learning in financial modelling. The results demonstrate that
while Random Forest and XGBoost offer strong predictive
capabilities, further improvements can be made by refining
feature selection strategies and optimizing boosting methods.
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